

Agenda

- >> The Port of Gothenburg
- » Sweden's energy system in brief
- » Dialog with the local grid owner
- » Timeline OPS installations
- » Strategy going forward
- » Conclusions

Why is OPS important for us

- » To reach our own climate goals. OPS will help us reduce 40 000 tons of CO2 annually which is equivalent to 24% in total
- » To meet upcoming legal requirements by 2030
- We are aware of shipping companies upcoming increased costs due to tougher regulations

Hence, we have a strategy to implement OPS in the whole port with a focus on climate benefits and legalizations 2024 – 2035

Port of Gothenburg 2023

914 000 containers TEU

267 000 shipped cars

18.4 m tonnes energy goods

57% containers in Sweden

5800 ship calls

1.4 m passengers

23% of all foreign trade

70 train movements/day

36.3 m tonnes of goods

Energy mix

Electricity generation mix, Sweden, 2022

Total energy supply Production Electricity Consumption

» https://www.iea.org/countries/sweden

Sweden's Energy system has no lack of electricity

- the challenge is the transmission capacity

» Sweden has 4 energy areas, SE1-SE4, 50 Hz

» The challenge is a lack of transmission capacity in and between some areas (Sweden produces 165 TWh, consumes 135 TWh)

- » Actors in the electricity system
 - » Net owners with monopoly (Main network, Regional network, Local grids)
 - » Electricity producers
 - » Electricity suppliers
 - Electricity bill 2 parts: 1) to net owner for transportation, 2) to supplier for used energy
- Solutions: network capacity expansion, new production units, peak shaving (price mechanism, flexibility market energy storages...)
 - * Energy supplied over the years
 - * The price development of the years

Success factor: Understand your own power need, establish a good relationship with the local grid owner and create a win-win situation

Plan for your demand for electricity infrastructure for the coming ~30 years

- 1. Learn what the available effect is in your net
- 2. Become friends with the local grid company and build trust
- 3. Simulate the port areas demand for effect
- 4. Elaborate different solutions to handle the effect that are intermittent (co-storage factors, energy storages, etc.

3 OPS TANKERS completion of project Green Cable, 50 Hz, 6,6 kV

2024

Overview existing OPS facilities – Port Authority responsible for installation and maintenance, Terminal operators Temponsible for Operation Gothenburg

A VARVET

RORO 2 OPS 50 Hz, 6,6 kV, 10,7 kV

TANKERS 3 OPS 50 Hz, 6,6 kV

₽\$

ROPAX 1 OPS 60 Hz, 10,7 kV

ROPAX 2 OPS

60 Hz, 10,7 kV

ANNEDAL

* Invoicing to the customer has been carried out by the terminal operator. They have an own subscription to the local network owners

* CAPEX & Maintenance costs managed in lease agreements. We own the switchgear stations

Lessons learned: important to have a clear plan after the warranty period is finished (clear roles & responsibilities, maintenance process...)

Strategy and moving forward

> 40,000 tC02 can be reduced per year in time

➤ Focus on climate benefit & upcoming regulations 2024-2035

➤ Parallel activities across various segments

➤ Different business models and roles & responsibilities for different terminal areas

➤ Proactive plan for grant applications to reduce CAPEX and enhance competitiveness

> Planning to build according to the IEC 80005-1 standard

➤ Long-term competence- and staffing plan

➤ The unique tanker project Green Cable will be in operation 2024 and aims to be a good international reference for upcoming project. OCIMF to develop recommendation for HVSC, to be public in the last quarter of 2024

Implementation overview and possible emission reductions yearly

CONTAINER

- South and West quays is approx. 1,8 km and narrow (0,9 m)
- >> Planning for several HVSC OPS, IEC 80005-1, Annex D
- » Complexity in finding optimal system design
- >> Expensive -> main substation, switchgears, channelization's
- > Challenge in finding and estimating future actual power consumption from container ships

HVSC FOR TANKERS

- » A new standard for shoreside power for tankers berthed in a hazardous environment
- In association with shipping companies on the island of Donsö, as well as national and European ports, classification societies, local oil companies, and the Swedish Transport AgencyPower supply up to 2 MW per jetty
- Supply voltage 6,6 kV, grid frequency 50 Hz
- » Shore based cable, handling with onboard crane, plug and socket system PC6 (RORO Annex B)
- » Midship position at ship in manifolder area, flexible for starboard and portside handling, central position at shore in loading arm area
- » Design to be in operation within permanent ATEX zone 1
- » ATEX (P) design pressurized system at shore with oxygen, at in the ship compartment, with inert gas or oxygen

To conclude / Lessons learned

» OPS is an important part in order for us to reach our climate goals

» Valuable to have a clear picture of your emissions

Building an OPS system is not a product delivery

 it is a system design delivery => thus important
 to prepare good procurement documents with a focus on clear functional requirements

» Collaborations and relationships with ship owners is important

>> Plan for a clear plan after warranty period is over

» Require data sharing in your agreements

